On almost structural completeness

°Wojciech Dzik and •Michał Stronkowski

°University of Silesia, Katowice, Poland •Warsaw University of Technology, Warsaw, Poland

TACL 2013, Vanderbilt University, July - August 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Deductive systems

 $\begin{array}{l} \textit{Sent} - \mathsf{set} \ \mathsf{of} \ \mathsf{propositional} \ \mathsf{sentences} \ \mathsf{using} \ \mathsf{connectives} \\ \textit{Ax} \ - \mathsf{axioms} \ (\subseteq \textit{Sent}) \\ & \mathsf{inference} \ \mathsf{rules:} \quad \frac{\Delta}{\varphi}, \quad \Delta \subseteq_{\mathit{fin}} \textit{Sent}, \ \varphi \in \textit{Sent} \\ & \mathsf{only \ structural} \ (\mathsf{schematic}) \ \mathsf{rules} \ - \ \mathsf{closed} \ \mathsf{on \ substitutions} \end{array}$

deductive system (Ax, R)

We identify deductive systems with finitary structural consequence relations $\vdash \subseteq \mathcal{P}(Sent) \times Sent$

$$(Ax, R) \mapsto \vdash_{Ax, R}$$

We write \vdash_L for some known systems like S4, S5, i.e. $\vdash_{S4} \vdash_{S5}$ etc.

Deductive systems, Structural Completeness

A rule
$$r: \frac{\Delta}{\varphi}$$
, is
-admissible in \vdash , if

 $\vdash \sigma(\psi), \text{ for each } \psi \in \Delta, \text{ implies } \vdash \sigma(\varphi)$

```
for each substitution \sigma;
```

-derivable in \vdash if

$\Delta\vdash\varphi$

A deductive system is Structurally Complete (SC) if every rule admissible in \vdash is derivable (Pogorzelski '71).

Theorem (Makinson '76)

A deductive system \vdash is SC if it cannot be extended without extending theorems, i.e. \vdash is maximal among all \vdash' having the same set of theorems as \vdash .

Deductive systems, Structural Completeness

Examples SC

Classical logic, Gödel -Dummett logic LC, Gödel logics G_n (D.-Wronski), positive Łukasiewicz logics (Wojtylak), INT \rightarrow , Medvedev logic (Prucnal), S4.3Grz (Rybakov), Product fuzzy logic, fragments of fuzzy logic (Metcalfe), fragments of relevant logic (Raftery) ...

Examples Not SC

INT, S4, S5, all Łukasiewicz logics \mathfrak{L}_n , \mathfrak{L}_∞ ...

Reasons?

```
INT, S4, \mathfrak{L}_{\infty} - "serious";
```

S5, \mathfrak{L}_n - "less serious". Why? The only reason: passive rules.

Passive rules, ASC

```
r:\Delta/\beta is passive in \vdash if
```

 $(\forall \tau)(\exists \delta \in \Delta) \not\vdash \tau(\delta)$

 $(\Delta \text{ is not unifiable in } \vdash)$

Example: S5, S4.3 ("less serious", paradox of " \Rightarrow " - admissible):

$$P_2: \quad \frac{\Diamond x \land \Diamond \neg x}{\bot}; \qquad (\forall x)((\Diamond x \land \Diamond \neg x \approx \top) \to \bot \approx \top)$$

 $\forall s_5 \Diamond \tau(x) \land \Diamond \neg \tau(x) \text{ all } \tau$, but $\Diamond x \land \Diamond \neg x$ is consistent in S5, S4.3

A deductive system \vdash is almost structurally complete, ASC iff every admissible rule in \vdash which is not passive is derivable in \vdash .

Projective Unification

A substitution σ is called a unifier for terms t_1, t_2 in an equational theory T if $\vdash_T \sigma(t_1) \approx \sigma(t_2)$. Such terms t_1, t_2 are called unifiable in T.

IN LOGIC - Deductive Systems:

A substitution σ is a unifier for a formula φ in \vdash , if $\vdash \sigma(\varphi)$,

A formula φ is unifiable in \vdash if it has a unifier. A unifier σ for φ is called projective if

 $\varphi \vdash \sigma(x) \leftrightarrow x$, for all $x \in var(\varphi)$

(Ghilardi '99).

A deductive system enjoys projective unification if every unifiable formula has a projective unifier.

Fact (D. '11)

If a deductive system has projective unification then it is ASC. In particular, every discriminator variety is ASC.

Examples ASC \setminus SC

n-potent Basic Fuzzy Logics, Łukasiewicz logics \mathfrak{L}_n (D. '06), modal logics: S5, all NExt S4.3 (D.-Wojtylak '11), relation algebras more coming...

Fact

For every \vdash there exists its SC extension \vdash^{SC} with the same set of theorems.

How far (algebraically) is \vdash^{SC} from \vdash ?

• for Łukasiewicz logics \mathfrak{L}_n take a product with **2**, i.e., $L_n \times \mathbf{2}$.

Quasivarieties

Quasi-identities look like

$$(\forall \bar{x}) \ s_1(\bar{x}) \approx t_1(\bar{t}) \land \cdots \land s_n(\bar{x}) \approx t_n(\bar{x}) \rightarrow s(\bar{x}) \approx t(\bar{x})$$

Quasivarieties look like

Mod(quasi-identities)

Correspondence for algebraizable deductive systems

deductive system \vdash	\longleftrightarrow	quasivariety \mathcal{Q}_{dash}
logical connectives	\longleftrightarrow	basic operations
theorems	\longleftrightarrow	identities
inference rules	\longleftrightarrow	quasi-identities

Almost Structural completeness algebraically

F - $\mathcal{Q}\text{-algebra}$ over \aleph_0 generators

 $\mathsf{Q}(\mathbf{F})$ - quasivariety generated by \mathbf{F}

A quasivariety Q is SC if Q = Q(F), i.e., every quasi-identity valid in F is valid in Q too.

Q is ASC if for every quasi-identity q valid in **F** either q is valid in Q or its premises are not satisfiable in **F**,

i.e., every non-passive quasi-identity valid in ${\boldsymbol{\mathsf{F}}}$ is also valid in ${\boldsymbol{\mathcal{Q}}}.$

Theorem

The following conditions are equivalent:

- ► Q is ASC;
- ▶ For every $A \in Q$, $A \times F \in Q(F)$ (Metcalfe, Röthlisberger '13)

- ロ ト - 4 回 ト - 4 □ - 4

▶ For every $A \in Q_{SI}$, $A \times F \in Q(F)$

- ► For every $\mathbf{A} \in \mathcal{Q}$, $(\exists h: \mathbf{A} \to \mathbf{F})$ yields $\mathbf{A} \in \mathsf{Q}(\mathbf{F})$
- ▶ For every $A \in Q_{FP}$, $(\exists h: A \rightarrow F)$ yields $A \in Q(F)$

Consequences

Corollary

Every variety with projective unification is ASC. This includes discriminator varieties (S5, MV_n) and a bit more (e.g. S4.3) (already mentioned by Wojtek).

Corollary (Metcalfe, Röthlisberger '13)

There is an efficient algorithm for deciding whether a finitely generated quasivariety is ASC.

Corollary

If every nontrivial algebra from \mathcal{Q} admits a homomorphism into **F**, then \mathcal{Q} is ASC iff it is SC. Examples: idempotent elements, Heyting algebras, Grzegorczyk algebras.

Better characterization for ASC

Theorem

Assume that Q is a quasivariety with finite model property and equationally definable relative principal congruences. Assume that **F** has a simple finite subalgebra **C**. Then V is ASC iff for every $\mathbf{S} \in \mathcal{V}_{SI}$

 $\mathbf{S} \leqslant \mathbf{F} \quad \mathrm{or} \quad \mathbf{S} \times \mathbf{C} \leqslant \mathbf{F}.$

- Equational definability of relative principal congruences corresponds to deduction-detachment theorem.
- in many cases C is is a 2-element Boolean algebra with extra operations.
- ► In order to use this theorem we need to know the structure of free and SI algebras in V.

Example

Let \mathbf{L}_n be the (n + 1)-element chain MV-algebra and $\mathcal{MV}_n = V(\mathbf{L}_n)$. Since

$$\mathbf{F}(m)\cong\prod_{k\mid n}\mathbf{L}_k^{c_k}$$

for some $c_k > 0$, and $L_1 \leq L_k$, we have $L_k \times L_1 \leq F$ (proved already in '82 by Pogorzelski and Wojtylak in logic) and \mathcal{MV}_n is ASC.

Discriminator varieties revisited II

Example

Let \mathbf{A}_n be the monadic algebras with *n*-atoms and only 0 and 1 closed. Let $S5 = V(\mathbf{A}_n \mid n > 0)$ be the variety of monadic algebras. Since

$$\mathbf{F}(m) \cong \prod_{k=1}^{2^m} \mathbf{A}_k^{c_k}$$

for some $c_k > 0$, and $\mathbf{A}_1 \leq \mathbf{A}_k$, we have $\mathbf{A}_k \times \mathbf{A}_1 \leq \mathbf{F}$ and S5 is ASC.

Example

Actually the argument for \mathcal{MV}_n and S5 works in a more general situation: for every locally finite discriminator variety \mathcal{V} with a nontrivial algebra embeddable into nontrivial members of \mathcal{V} .

New ASC \setminus SC varieties of modal algebras

In known examples of ASC \setminus SC varieties of modal algebras finitely presented algebras admitting a homomorphism into **F** embed into **F** - they have projective unification.

Theorem

Let $\mathcal{V} \in \{\mathcal{LEV}_2, \mathcal{LEV}_3, \dots, \mathcal{MED}\}$ and \mathcal{W} be a non-minimal subvariety of S5. Then the varietal join $\mathcal{V} \lor \mathcal{W}$ is ASC \setminus SC.

New ASC \setminus SC varieties of modal algebras II

Proof

- ▶ V is SC (Prucnal '76),
- \mathcal{W} is ASC \setminus SC,
- ▶ SI algebras from $\mathcal{V} \lor \mathcal{W}$ are either in \mathcal{V} or in \mathcal{W} ,
- ▶ $\mathbf{F}(n) \cong \mathbf{F}_V(n) \times \mathbf{G}_W(n)$, where $\mathbf{G}_W(n)$ is a factor of $\mathbf{F}_W(n)$,
- 2-element modal algebra embeds into every nontrivial modal algebra.

Theorem

Let $\mathcal{V} \in \{\mathcal{LEV}_2, \mathcal{LEV}_3, \ldots, \mathcal{MED}\}$ and \mathcal{W} be a non-minimal subvariety of S5. Then the varietal join $\mathcal{V} \lor \mathcal{W}$ has a finitely presented algebra admitting a homomorphism into F and is not embeddable into F. Hence it has neither unitary nor projective unification.

The end

This is all

Thank you!